Nanocomposites from biopolymer hydrogels: Blueprints for white biotechnology and green materials chemistry
نویسندگان
چکیده
منابع مشابه
Biotechnology and Green Chemistry
White biotechnology can be regarded as applied biocatalysis, with enzymes and microorganisms, aiming at industrial production of bulk and fine chemicals to food and animal feed additives. In its turn biocatalysis has many attractive features in the context of greenchemistry: mild reaction conditions (physiological pH and temperature); environmentally compatible catalysts and solvent (often wate...
متن کاملRelevance of chemistry to white biotechnology
White biotechnology is a fast emerging area that concerns itself with the use of biotechnological approaches in the production of bulk and fine chemicals, biofuels, and agricultural products. It is a truly multidisciplinary area and further progress depends critically on the role of chemists. This article outlines the emerging contours of white biotechnology and encourages chemists to take up s...
متن کاملImogolite Reinforced Nanocomposites: Multifaceted Green Materials
This paper presents an overview on recent developments of imogolite reinforced nanocomposites, including fundamental structure, synthesis/purification of imogolite, physicochemical properties of nanocomposites and potential applications in industry. The naturally derived nanotubular material of imogolite represents a distinctive class of nanofiller for industrially significant polymer. The inco...
متن کاملExtraction of Hemicellulose and Lignin from Sugarcane Bagasse for Biopolymer Films: Green Process
A hemicellulose is any of several heteropolymers , such as arabinoxylans, present along with cellulose in almost all plant cell walls. Hemicellulose has a random, amorphous structure with little strength. It is easily hydrolyzed by dilute acid or base as well as myriad hemicellulase enzymes. In this study, lignin and hemicellulose was extracted from sugarcane bagasse using the ammonium hydrolys...
متن کاملControlled Release of Doxofylline from Biopolymer Based Hydrogels
In order to modify the xanthan gum (XG) polysaccharide and to develop the hydrogels meant for the drug delivery, we have prepared XG-g-poly [HEMA-co-AA] superporous hydrogel (SPH) through chemical cross-linking by graft copolymerization of 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AA) on to XG via redox initiator system of ammonium persulfate (APS) and N, N, N’, N’tetramethylethylene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Polymer Science Part B: Polymer Physics
سال: 2012
ISSN: 0887-6266
DOI: 10.1002/polb.23061